Assessing Water Shortage through a Balance Model among Transfers, Groundwater, Desalination, Wastewater Reuse, and Water Demands (SE Spain)

Author:

Jodar-Abellan Antonio,Fernández-Aracil PatriciaORCID,Melgarejo-Moreno Joaquín

Abstract

Currently, water demands are increasing notoriously, spreading the pressure on available water resources around the world in both quantity and quality. Similarly, the expected reduction of natural water inputs, due to climate change, depicts a new level of uncertainty. Specifically, Southeast Spain presents water scarcity due to its aridity—irregular and scarce precipitation and high evapotranspiration rates—combined with the competition between several water demands: environment, agricultural dynamics, urban-tourist activities, and industry. The study area of this work is the most relevant functional urban area of Alicante province (SE Spain), where the administration of water management is carried out by a range of authorities at different levels as the consequence of a complex historical development of water governance schemes: at the national, regional, and local levels. This study analyzes 21 municipalities and proposes a conceptual model which was developed by including different origins of water inputs—surface resources, groundwater, desalination, wastewater reuse, or interbasin transfers—and water demands with information obtained from 16 different sources. Our main results denote a relevant water deficit of 72.6 hm3/year even when one of the greatest rates of desalinated water and reused wastewater in Europe are identified here. This negative balance entails restrictions in urban development and agricultural growth. Thus, presented results are noteworthy for the water policy makers and planning authorities, by balancing the demand for water among various end users and providing a way for understanding water distribution in a context of scarcity and increasing demand, which will become one of the most challenging tasks in the 21st century.

Funder

Project Life Empore

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3