Metabolic Drug Response Phenotyping in Colorectal Cancer Organoids by LC-QTOF-MS

Author:

Neef Sylvia K.,Janssen Nicole,Winter Stefan,Wallisch Svenja K.,Hofmann UteORCID,Dahlke Marc H.,Schwab Matthias,Mürdter Thomas E.,Haag MathiasORCID

Abstract

As metabolic rewiring is crucial for cancer cell proliferation, metabolic phenotyping of patient-derived organoids is desirable to identify drug-induced changes and trace metabolic vulnerabilities of tumor subtypes. We established a novel protocol for metabolomic and lipidomic profiling of colorectal cancer organoids by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) facing the challenge of capturing metabolic information from a minimal sample amount (<500 cells/injection) in the presence of an extracellular matrix (ECM). The best procedure of the tested protocols included ultrasonic metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v/v) without ECM removal. To eliminate ECM-derived background signals, we implemented a data filtering procedure based on the p-value and fold change cut-offs, which retained features with signal intensities >120% compared to matrix-derived signals present in blank samples. As a proof-of-concept, the method was applied to examine the early metabolic response of colorectal cancer organoids to 5-fluorouracil treatment. Statistical analysis revealed dose-dependent changes in the metabolic profiles of treated organoids including elevated levels of 2′-deoxyuridine, 2′-O-methylcytidine, inosine and 1-methyladenosine and depletion of 2′-deoxyadenosine and specific phospholipids. In accordance with the mechanism of action of 5-fluorouracil, changed metabolites are mainly involved in purine and pyrimidine metabolism. The novel protocol provides a first basis for the assessment of metabolic drug response phenotypes in 3D organoid models.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3