Metabolic Fingerprinting with Fourier-Transform Infrared (FTIR) Spectroscopy: Towards a High-Throughput Screening Assay for Antibiotic Discovery and Mechanism-of-Action Elucidation

Author:

Ribeiro da Cunha BernardoORCID,Fonseca Luís P.,Calado Cecília R.C.ORCID

Abstract

The discovery of antibiotics has been slowing to a halt. Phenotypic screening is once again at the forefront of antibiotic discovery, yet Mechanism-Of-Action (MOA) identification is still a major bottleneck. As such, methods capable of MOA elucidation coupled with the high-throughput screening of whole cells are required now more than ever, for which Fourier-Transform Infrared (FTIR) spectroscopy is a promising metabolic fingerprinting technique. A high-throughput whole-cell FTIR spectroscopy-based bioassay was developed to reveal the metabolic fingerprint induced by 15 antibiotics on the Escherichia coli metabolism. Cells were briefly exposed to four times the minimum inhibitory concentration and spectra were quickly acquired in the high-throughput mode. After preprocessing optimization, a partial least squares discriminant analysis and principal component analysis were conducted. The metabolic fingerprints obtained with FTIR spectroscopy were sufficiently specific to allow a clear distinction between different antibiotics, across three independent cultures, with either analysis algorithm. These fingerprints were coherent with the known MOA of all the antibiotics tested, which include examples that target the protein, DNA, RNA, and cell wall biosynthesis. Because FTIR spectroscopy acquires a holistic fingerprint of the effect of antibiotics on the cellular metabolism, it holds great potential to be used for high-throughput screening in antibiotic discovery and possibly towards a better understanding of the MOA of current antibiotics.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3