Nematode-Trapping Fungi Produce Diverse Metabolites during Predator–Prey Interaction

Author:

Kuo Ting-HaoORCID,Yang Ching-Ting,Chang Hsin-Yuan,Hsueh Yen-Ping,Hsu Cheng-ChihORCID

Abstract

Nematode-trapping fungi are natural antagonists of nematodes. These predatory fungi are capable of switching their lifestyle from a saprophytic to predatory stage in the presence of nematodes by developing specialized trapping devices to capture and consume nematodes. The biochemical mechanisms of such predator–prey interaction have become increasingly studied given the potential application of nematode-trapping fungi as biocontrol agents, but the involved fungal metabolites remain underexplored. Here, we report a comprehensive liquid–chromatography mass spectrometry (LC–MS) metabolomics study on one hundred wild isolates of nematode-trapping fungi in three different species, Arthrobotrys oligospora, Arthrobotrys thaumasia, and Arthrobotrys musiformis. Molecular networking analysis revealed that the fungi were capable of producing thousands of metabolites, and such chemical diversity of metabolites was notably increased as the fungi switched lifestyle to the predatory stage. Structural annotations by tandem mass spectrometry revealed that those fungal metabolites belonged to various structural families, such as peptide, siderophore, fatty alcohol, and fatty acid amide, and their production exhibited species specificity. Several small peptides (<1.5 kDa) produced by A. musiformis in the predatory stage were found, with their partial amino acid sequences resolved by the tandem mass spectra. Four fungal metabolites (desferriferrichrome, linoleyl alcohol, nonadecanamide, and citicoline) that were significantly enriched in the predatory stage were identified and validated by chemical standards, and their bioactivities against nematode prey were assessed. The availability of the metabolomics datasets will facilitate comparative studies on the metabolites of nematode-trapping fungi in the future.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3