Accelerated Wound Border Closure Using a Microemulsion Containing Non-Inhibitory Recombinant α1-Antitrypsin

Author:

Gimmon Alon,Sherker Lior,Kojukarov Lena,Zaknoun Melodie,Lior YotamORCID,Fadel Tova,Schuster Ronen,Lewis Eli C.ORCID,Silberstein Eldad

Abstract

Wound healing requires a non-compromising combination of inflammatory and anti-inflammatory processes. Human α1-antitrypsin (hAAT), a circulating glycoprotein that rises during acute-phase responses and during healthy pregnancies, is tissue-protective and tolerance-inducing; although anti-inflammatory, hAAT enhances revascularization. hAAT blocks tissue-degrading enzymes, including neutrophil elastase; it is, therefore, unclear how wound healing might improve under hAAT-rich conditions. Here, wound healing was examined in the presence of recombinant hAAT (hAATWT) and protease-inhibition-lacking hAAT (hAATCP). The impact of both hAAT forms was determined by an epithelial cell gap closure assay, and by excisional skin injuries via a microemulsion optimized for open wounds. Neutrophilic infiltration was examined after 8 h. According to results, both hAAT forms accelerated epithelial gap closure and excisional wound closure, particularly at early time points. Unlike dexamethasone-treated wounds, both resulted in closed borders at the 8-h time point. In untreated and hAATCP-treated wounds, leukocytic infiltrates were widespread, in hAATWT-treated wounds compartmentalized and in dexamethasone-treated wounds, scarce. Both hAAT forms decreased interleukin-1β and increased VEGF gene expression. In conclusion hAAT improves epithelial cell migration and outcomes of in vivo wounds irrespective of protease inhibition. While both forms of hAAT allow neutrophils to infiltrate, only native hAAT created discrete neutrophilic tissue clusters.

Funder

Israeli Ministry of Science, Technology and Space

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3