Abstract
Microglial polarization to the M1 phenotype (classically activated) or the M2 phenotype (alternatively activated) is critical in determining the fate of immune responses in neurodegenerative diseases (NDs). M1 macrophages contribute to neurotoxicity, neuronal and synaptic damage, and oxidative stress and are the first line of defense, and M2 macrophages elicit an anti-inflammatory response to regulate neuroinflammation, clear cell debris, and promote neuroregeneration. Various studies have focused on the ability of natural compounds to promote microglial polarization from the M1 phenotype to the M2 phenotype in several diseases, including NDs. However, studies on the roles of fatty acids in microglial polarization and their implications in NDs are a rare find. Most of the studies support the role of polyunsaturated fatty acids (PUFAs) in microglial polarization using cell and animal models. Thus, we aimed to collect data and provide a narrative account of microglial types, markers, and studies pertaining to fatty acids, particularly PUFAs, on microglial polarization and their neuroprotective effects. The involvement of only PUFAs in the chosen topic necessitates more in-depth research into the role of unexplored fatty acids in microglial polarization and their mechanistic implications. The review also highlights limitations and future challenges.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献