Comparative Use of Contralateral and Sham-Operated Controls Reveals Traces of a Bilateral Genetic Response in the Rat Brain after Focal Stroke

Author:

Filippenkov Ivan B.ORCID,Remizova Julia A.,Denisova Alina E.,Stavchansky Vasily V.,Golovina Ksenia D.ORCID,Gubsky Leonid V.,Limborska Svetlana A.,Dergunova Lyudmila V.

Abstract

Ischemic stroke is a multifactorial disease with a complex etiology and global consequences. Model animals are widely used in stroke studies. Various controls, either brain samples from sham-operated (SO) animals or symmetrically located brain samples from the opposite (contralateral) hemisphere (CH), are often used to analyze the processes in the damaged (ipsilateral) hemisphere (IH) after focal stroke. However, previously, it was shown that focal ischemia can lead to metabolic and transcriptomic changes not only in the IH but also in the CH. Here, using a transient middle cerebral artery occlusion (tMCAO) model and genome-wide RNA sequencing, we identified 1941 overlapping differentially expressed genes (DEGs) with a cutoff value >1.5 and Padj < 0.05 that reflected the general transcriptome response of IH subcortical cells at 24 h after tMCAO using both SO and CH controls. Concomitantly, 861 genes were differentially expressed in IH vs. SO, whereas they were not vs. the CH control. Furthermore, they were associated with apoptosis, the cell cycle, and neurotransmitter responses. In turn, we identified 221 DEGs in IH vs. CH, which were non-DEGs vs. the SO control. Moreover, they were predominantly associated with immune-related response. We believe that both sets of non-overlapping genes recorded transcriptome changes in IH cells associated with transhemispheric differences after focal cerebral ischemia. Thus, the specific response of the CH transcriptome should be considered when using it as a control in studies of target brain regions in diseases that induce a global bilateral genetic response, such as stroke.

Funder

RFBR and Moscow city Government

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3