Development of Novel Ecto-Nucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) Inhibitors for Tumor Immunotherapy

Author:

Wang Xiang,Lu Xing,Yan Daojing,Zhou Yajun,Tan Xiangshi

Abstract

The cyclic guanosine monophosphate–adenosine monophosphate synthase–stimulator of interferon genes–TANK-binding kinase 1–interferon regulating factor 3 (cGAS-STING-TBK1-IRF3) axis is now acknowledged as the major signaling pathway in innate immune responses. However, 2′,3′-cGAMP as a STING stimulator is easily recognized and degraded by ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which reduces the effect of tumor immunotherapy and promotes metastatic progression. In this investigation, the structure-based virtual screening strategy was adopted to discover eight candidate compounds containing zinc-binding quinazolin-4(3H)-one scaffold as ENPP1 inhibitors. Subsequently, these novel inhibitors targeting ENPP1 were synthesized and characterized by NMR and high-resolution mass spectra (HRMS). In bioassays, 7-fluoro-2-(((5-methoxy-1H-imidazo[4,5-b]pyridin-2-yl)thio)methyl)quina-zolin-4(3H)-one(compound 4e) showed excellent activity against the ENPP1 at the molecular and cellular levels, with IC50 values of 0.188 μM and 0.732 μM, respectively. Additionally, compound 4e had superior selectivity towards metastatic breast cancer cells (4T1) than towards normal cells (LO2 and 293T) in comparison with cisplatin, indicating that compound 4e can potentially be used in metastatic breast cancer therapy. On the other hand, compound 4e upgraded the expression levels of IFN-β in vivo by preventing the ENPP1 from hydrolyzing the cGAMP to stimulate a more potent innate immune response. Therefore, this compound might be applied to boost antitumor immunity for cancer immunotherapy. Overall, our work provides a strategy for the development of a promising drug candidate targeting ENPP1 for tumor immunotherapy.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3