Molecular Mechanism of Equine Endometrosis: The NF-κB-Dependent Pathway Underlies the Ovarian Steroid Receptors’ Dysfunction

Author:

Jasiński TomaszORCID,Zdrojkowski ŁukaszORCID,Ferreira-Dias GraçaORCID,Kautz Ewa,Juszczuk-Kubiak EdytaORCID,Domino MałgorzataORCID

Abstract

Endometrosis is a frequently occurring disease decreasing mares’ fertility. Thus, it is an important disease of the endometrium associated with epithelial and stromal cell alterations, endometrium gland degeneration and periglandular fibrosis. Multiple degenerative changes are found in uterine mucosa, the endometrium. However, their pathogenesis is not well known. It is thought that nuclear factor-κB (NF-κB), a cell metabolism regulator, and its activation pathways take part in it. The transcription of the profibrotic pathway genes of the NF-κB in fibrotic endometria differed between the follicular (FLP) and mid-luteal (MLP) phases of the estrous cycle, as well as with fibrosis progression. This study aimed to investigate the transcription of genes of estrogen (ESR1, ESR2) and progesterone receptors (PGR) in equine endometria to find relationships between the endocrine environment, NF-κB-pathway, and fibrosis. Endometrial samples (n = 100), collected in FLP or MLP, were classified histologically, and examined using quantitative PCR. The phase of the cycle was determined through the evaluation of ovarian structures and hormone levels (estradiol, progesterone) in serum. The transcription of ESR1, ESR2, and PGR decreased with the severity of endometrial fibrosis and degeneration of the endometrium. Moreover, differences in the transcription of ESR1, ESR2, and PGR were noted between FLP and MLP in the specific categories and histopathological type of equine endometrosis. In FLP and MLP, specific moderate and strong correlations between ESR1, ESR2, PGR and genes of the NF-κB pathway were evidenced. The transcription of endometrial steroid receptors can be subjected to dysregulation with the degree of equine endometrosis, especially in both destructive types of endometrosis, and mediated by the canonical NF-κB pathway depending on the estrous cycle phase.

Funder

National Science Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3