Lim Domain Binding 3 (Ldb3) Identified as a Potential Marker of Cardiac Extracellular Vesicles

Author:

Abou Zeid FadiORCID,Charrier Henri,Beseme Olivia,Michel Jean-Baptiste,Mulder Paul,Amouyel Philippe,Pinet FlorenceORCID,Turkieh Annie

Abstract

Extracellular vesicles (EVs) are considered as transporters of biomarkers for the diagnosis of cardiac diseases, playing an important role in cell-to-cell communication during physiological and pathological processes. However, specific markers for the isolation and analysis of cardiac EVs are missing, imposing limitation on understanding their function in heart tissue. For this, we performed multiple proteomic approaches to compare EVs isolated from neonate rat cardiomyocytes and cardiac fibroblasts by ultracentrifugation, as well as EVs isolated from minced cardiac tissue and plasma by EVtrap. We identified Ldb3, a cytoskeletal protein which is essential in maintaining Z-disc structural integrity, as enriched in cardiac EVs. This result was validated using different EV isolation techniques showing Ldb3 in both large and small EVs. In parallel, we showed that Ldb3 is almost exclusively detected in the neonate rat heart when compared to other tissues, and specifically in cardiomyocytes compared to cardiac fibroblasts. Furthermore, Ldb3 levels, specifically higher molecular weight isoforms, were decreased in the left ventricle of ischemic heart failure patients compared to control groups, but not in the corresponding EVs. Our results suggest that Ldb3 could be a potential cardiomyocytes derived-EV marker and could be useful to identify cardiac EVs in physiological and pathological conditions.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3