Potential Renal Damage Biomarkers in Alport Syndrome—A Review of the Literature

Author:

Gomes Ana Marta,Lopes Daniela,Almeida Clara,Santos Sofia,Malheiro Jorge,Lousa IrinaORCID,Caldas Afonso Alberto,Beirão Idalina

Abstract

Alport syndrome (AS) is the second most common cause of inherited chronic kidney disease. This disorder is caused by genetic variants on COL4A3, COL4A4 and COL4A5 genes. These genes encode the proteins that constitute collagen type IV of the glomerular basement membrane (GBM). The heterodimer COL4A3A4A5 constitutes the majority of the GBM, and it is essential for the normal function of the glomerular filtration barrier (GFB). Alterations in any of collagen type IV constituents cause disruption of the GMB structure, allowing leakage of red blood cells and albumin into the urine, and compromise the architecture of the GFB, inducing inflammation and fibrosis, thus resulting in kidney damage and loss of renal function. The advances in DNA sequencing technologies, such as next-generation sequencing, allow an accurate diagnose of AS. Due to the important risk of the development of progressive kidney disease in AS patients, which can be delayed or possibly prevented by timely initiation of therapy, an early diagnosis of this condition is mandatory. Conventional biomarkers such as albuminuria and serum creatinine increase relatively late in AS. A panel of biomarkers that might detect early renal damage, monitor therapy, and reflect the prognosis would have special interest in clinical practice. The aim of this systematic review is to summarize the biomarkers of renal damage in AS as described in the literature. We found that urinary Podocin and Vascular Endothelial Growth Factor A are important markers of podocyte injury. Urinary Epidermal Growth Factor has been related to tubular damage, interstitial fibrosis and rapid progression of the disease. Inflammatory markers such as Transforming Growth Factor Beta 1, High Motility Group Box 1 and Urinary Monocyte Chemoattractant Protein- 1 are also increased in AS and indicate a higher risk of kidney disease progression. Studies suggest that miRNA-21 is elevated when renal damage occurs. Novel techniques, such as proteomics and microRNAs, are promising.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3