Intercellular Adhesion Molecule-1 Enhances Myonuclear Transcription during Injury-Induced Muscle Regeneration

Author:

Buckley Kole H.,Nestor-Kalinoski Andrea L.,Pizza Francis X.ORCID

Abstract

The local inflammatory environment of injured skeletal muscle contributes to the resolution of the injury by promoting the proliferation of muscle precursor cells during the initial stage of muscle regeneration. However, little is known about the extent to which the inflammatory response influences the later stages of regeneration when newly formed (regenerating myofibers) are accumulating myonuclei and undergoing hypertrophy. Our prior work indicated that the inflammatory molecule ICAM-1 facilitates regenerating myofiber hypertrophy through a process involving myonuclear positioning and/or transcription. The present study tested the hypothesis that ICAM-1 enhances global transcription within regenerating myofibers by augmenting the transcriptional activity of myonuclei positioned in linear arrays (nuclear chains). We found that transcription in regenerating myofibers was ~2-fold higher in wild type compared with ICAM-1-/- mice at 14 and 28 days post-injury. This occurred because the transcriptional activity of individual myonuclei in nuclei chains, nuclear clusters, and a peripheral location were ~2-fold higher in wild type compared with ICAM-1-/- mice during regeneration. ICAM-1’s enhancement of transcription in nuclear chains appears to be an important driver of myofiber hypertrophy as it was statistically associated with an increase in myofiber size during regeneration. Taken together, our findings indicate that ICAM-1 facilitates myofiber hypertrophy after injury by enhancing myonuclear transcription.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3