Role of Intrinsic Subtype Analysis with PAM50 in Hormone Receptors Positive HER2 Negative Metastatic Breast Cancer: A Systematic Review

Author:

Canino FabioORCID,Piacentini FedericoORCID,Omarini Claudia,Toss AngelaORCID,Barbolini Monica,Vici Patrizia,Dominici Massimo,Moscetti Luca

Abstract

Endocrine therapy (ET), associated with CDK 4/6 inhibitors, represents the first choice of treatment for HR+/HER2- metastatic breast cancer (mBC). Primary or secondary endocrine resistance could develop; however validated biomarkers capable of predicting such a conditions are not available. Several studies have shown that HR+/HER2- mBC comprises five intrinsic subtypes. The purpose of this systematic review was to analyze the potential correlations between intrinsic subtype, efficacy of treatment, and patient outcome. Five papers that analyzed the intrinsic subtype with PAM50 assay in patients (pts) with HR+/HER2- mBC treated with ET (alone or in combination) within seven phase III clinical trials (EGF30008, BOLERO-2, PALOMA-2,3, MONALEESA-2,3,7) were identified. Non-luminal subtypes are more frequent in endocrine-resistant pts and in metastatic sites (vs. primary tumors), have less benefit from ET, and worse prognosis. Among these, HER2-enriched subtypes are similar to HER2+ tumors and benefit from the addition of anti-HER2 agents (lapatinib) and, for less clear reasons, of ribociclib (unconfirmed data for palbociclib and everolimus). Basal-like subtypes are similar to triple-negative tumors, making them more sensitive to chemotherapy. The intrinsic subtype is also not static but can vary over time with the evolution of the disease. Currently, the intrinsic subtype does not play a decisive role in the choice of treatment in clinical practice, but has potential prognostic and predictive value that should be further investigated.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3