Identification and Characterization of the Core Region of ZmDi19-5 Promoter Activity and Its Upstream Regulatory Proteins

Author:

Zhao YangORCID,Xu Lijuan,Huang Yuanxiang,Wu Hongying,Zhang Xingen,Hu Xiaolin,Ma Qing

Abstract

Drought-induced 19 (Di19) family genes play important roles in plant growth, development, and environmental stress responses. However, little is known about this family in maize. The upstream regulatory network of Di19 genes remains poorly understood in plant stress response, especially. In this study, seven ZmDi19 genes were identified, and sequence alignment, gene structure, and phylogenetic analysis was conducted. According to the phylogenetic analysis, the ZmDi19-5 promoter was cloned and multiple putative stress-responsive cis-acting elements (CAEs) were found in the promoter region. The transient transformation assay indicated that firefly luciferase (LUC)-expressed activity driven by the ZmDi19-5 promoter can be significantly induced by drought stress. A 450 bp core region of ZmDi19-5 promoter was identified, and 28 upstream regulatory proteins were screened using yeast one-hybird (Y1H) system. According to the functional annotation, some genes were related to photosynthesis, light response, and water transport, which may suggest the important roles of these genes in drought response. Particularly, five members that may be involved in drought response exhibited strong binding activity to the core region of the ZmDi19-5 promoter. This study laid an important foundation for further revealing the molecular mechanisms and regulatory network of Di19 genes in drought stress response.

Funder

National Natural Science Foundation of China

Natural Science Research Project of Anhui Educational Committee

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Functional Characterization of the MeSSIII-1 Gene and Its Promoter from Cassava;International Journal of Molecular Sciences;2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3