Abstract
Staufen 1 (STAU1) is an RNA-binding protein that is essential in untransformed cells. In cancer cells, it is rather STAU1 overexpression that impairs cell proliferation. In this paper, we show that a modest increase in STAU1 expression in cancer cells triggers apoptosis as early as 12 h post-transfection and impairs proliferation in non-apoptotic cells for several days. Interestingly, a mutation that mimics the phosphorylation of STAU1 serine 20 is sufficient to cause these phenotypes, indicating that serine 20 is at the heart of the molecular mechanism leading to apoptosis. Mechanistically, phosphomimicry on serine 20 alters the ability of STAU1 to regulate translation and the decay of STAU1-bound mRNAs, indicating that the posttranscriptional regulation of mRNAs by STAU1 controls the balance between proliferation and apoptosis. Unexpectedly, the expression of RBD2S20D, the N-terminal 88 amino acids with no RNA-binding activity, is sufficient to induce apoptosis via alteration, in trans, of the posttranscriptional functions of endogenous STAU1. These results suggest that STAU1 is a sensor that controls the balance between cell proliferation and apoptosis, and, therefore, may be considered as a novel therapeutic target against cancer.
Funder
Canadian Institutes of Health Research
Natural Sciences and Engineering Research Council
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献