Abstract
An oversupply of nutrients with a loss of metabolic flexibility and subsequent cardiac dysfunction are hallmarks of diabetic cardiomyopathy. Even if excess substrate is offered, the heart suffers energy depletion as metabolic fluxes are diminished. To study the effects of a high glucose supply, a stably glucose transporter type 4 (GLUT4)-overexpressing cell line presenting an onset of diabetic cardiomyopathy-like phenotype was established. Long-term hyperglycaemia effects were analysed. Rat cardiomyoblasts overexpressing GLUT4 (H9C2KE2) were cultured under normo- and hyperglycaemic conditions for long-term. Expression profiles of several proteins were compared to non-transfected H9C2 cells (H9C2) using RT-qPCR, proteomics-based analysis, or Western blotting. GLUT4 surface analysis, glucose uptake, and cell morphology changes as well as apoptosis/necrosis measurements were performed using flow cytometry. Additionally, brain natriuretic peptide (BNP) levels, reactive oxygen species (ROS) formation, glucose consumption, and lactate production were quantified. Long-term hyperglycaemia in H9C2KE2 cells induced increased GLUT4 presence on the cell surface and was associated with exaggerated glucose influx and lactate production. On the metabolic level, hyperglycaemia affected the tricarboxylic acid (TCA) cycle with accumulation of fumarate. This was associated with increased BNP-levels, oxidative stress, and lower antioxidant response, resulting in pronounced apoptosis and necrosis. Chronic glucose overload in cardiomyoblasts induced by GLUT4 overexpression and hyperglycaemia resulted in metabolically stimulated proteome profile changes and metabolic alterations on the TCA level.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献