A Flexible and Stretchable MXene/Waterborne Polyurethane Composite-Coated Fiber Strain Sensor for Wearable Motion and Healthcare Monitoring

Author:

Cao Junming12,Jiang Yuanqing3,Li Xiaoming3,Yuan Xueguang12ORCID,Zhang Jinnan12ORCID,He Qi12,Ye Fei12,Luo Geng12,Guo Shaohua12,Zhang Yangan12,Wang Qi12ORCID

Affiliation:

1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. No. 208 Research Institute of China Ordnance Industries, Beijing 102202, China

Abstract

Fiber-based flexible sensors have promising application potential in human motion and healthcare monitoring, owing to their merits of being lightweight, flexible, and easy to process. Now, high-performance elastic fiber-based strain sensors with high sensitivity, a large working range, and excellent durability are in great demand. Herein, we have easily and quickly prepared a highly sensitive and durable fiber-based strain sensor by dip coating a highly stretchable polyurethane (PU) elastic fiber in an MXene/waterborne polyurethane (WPU) dispersion solution. Benefiting from the electrostatic repulsion force between the negatively charged WPU and MXene sheets in the mixed solution, very homogeneous and stable MXene/WPU dispersion was successfully obtained, and the interconnected conducting networks were correspondingly formed in a coated MXene/WPU shell layer, which makes the as-prepared strain sensor exhibit a gauge factor of over 960, a large sensing range of over 90%, and a detection limit as low as 0.5% strain. As elastic fiber and mixed solution have the same polymer constitute, and tight bonding of the MXene/WPU conductive composite on PU fibers was achieved, enabling the as-prepared strain sensor to endure over 2500 stretching–releasing cycles and thus show good durability. Full-scale human motion detection was also performed by the strain sensor, and a body posture monitoring, analysis, and correction prototype system were developed via embedding the fiber-based strain sensors into sweaters, strongly indicating great application prospects in exercise, sports, and healthcare.

Funder

Fund of State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications

No. 208 Research Institute of China Ordnance Industries

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3