Abstract
Nanomedicine is growing due to the development of new medical diagnostic tools and new nanostructure-based therapies that exert direct biological action or function as pharmacological carriers. Nanoparticles (NPs) synthesis provides an eco-friendly approach for different applications. Among NPs, silver NPs (AgNPs) are gaining considerable research interest due to their broad range of activity and their usability in the medical and biotechnology fields. In this study, a new AgNP synthesis method was developed using an aqueous pigeon dropping (PD) extract in silver nitrate (AgNO3). The rapid of AgNPs yield was detected visually. Analysis of UV-vis spectroscopy, energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) and electron microscopy (TEM) transmission showed a spherical or near spherical shape of AgNPs with mean size of 135 nm. AgNPs antimicrobial activities (anti-bacterial and anti-fungal) were determined using agar well diffusion method. These NPs further screened for anticancer activity in vitro using A-549 and MCF-7 cell lines. The results showed that the inhibition zone for the obtained PD AgNPs versus Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus were 26, 18, 17 and 15 mm, respectively. PD AgNPs showed the highest antifungal effect against Aspergillus flavus and the lowest effect against Penicillium griseofulvum. In vitro anti-cancer activities showed that the inhibitory concentration of 50% (IC50) of AgNPs was 10.3 ± 1.15 and 12.19 ± 0.75 µg mL−1 against A-549 and MCF-7 cancer cell lines, respectively.
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献