Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing

Author:

Liu Shen,Xiao Hang,Chen Yanping,Chen Peijing,Yan Wenqi,Lin Qiao,Liu Bonan,Xu Xizhen,Wang YipingORCID,Weng Xiaoyu,Liu Liwei,Qu JunleORCID

Abstract

Nanomechanical resonators made from suspended graphene combine the properties of ultracompactness and ultrahigh detection sensitivity, making them interesting devices for sensing applications. However, nanomechanical systems can be affected by membrane stress. The present work developed an optomechanical resonator for thermal stress sensing. The proposed resonator consists of a section of hollow core fiber (HCF) and a trampoline graphene–Au membrane. An all-optical system that integrated optical excitation and optical detection was applied. Then, the resonance frequency of the resonator was obtained through this all-optical system. In addition, this system and the resonator were used to detect the membrane’s built-in stress, which depended on the ambient temperature, by monitoring the resonance frequency shift. The results verified that the temperature-induced thermal effect had a significant impact on membrane stress. Temperature sensitivities of 2.2646 kHz/°C and 2.3212 kHz/°C were obtained when the temperature rose and fell, respectively. As such, we believe that this device will be beneficial for the quality monitoring of graphene mechanical resonators.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3