Unveiling the Biological Function of Phyllostachys edulis FBA6 (PeFBA6) through the Identification of the Fructose-1,6-Bisphosphate Aldolase Gene

Author:

Li Tiankuo12,Li Hui12,Zhu Chenglei12,Yang Kebin12,Lin Zeming12,Wang Jiangfei12,Gao Zhimin12ORCID

Affiliation:

1. Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China

2. Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China

Abstract

Fructose-1,6-bisphosphate aldolase (FBA) is a pivotal enzyme in various metabolic pathways, including glycolysis, gluconeogenesis, and the Calvin cycle. It plays a critical role in CO2 fixation. Building on previous studies on the FBA gene family in Moso bamboo, our study revealed the biological function of PeFBA6. To identify CSN5 candidate genes, this study conducted a yeast two-hybrid library screening experiment. Subsequently, the interaction between CSN5 and PeFBA6 was verified using yeast two-hybrid and LCI experiments. This investigation uncovered evidence that FBA may undergo deubiquitination to maintain glycolytic stability. To further assess the function of PeFBA6, it was overexpressed in rice. Various parameters were determined, including the light response curve, CO2 response curve, and the levels of glucose, fructose, sucrose, and starch in the leaves of overexpressing rice. The results demonstrated that overexpressed rice exhibited a higher saturation light intensity, net photosynthetic rate, maximum carboxylation rate, respiration rate, and increased levels of glucose, fructose, and starch than wild-type rice. These findings indicated that PeFBA6 not only enhanced the photoprotection ability of rice but also improved the photosynthetic carbon metabolism. Overall, this study enhanced our understanding of the function of FBA and revealed the biological function of PeFBA6, thereby providing a foundation for the development of excellent carbon fixation bamboo varieties through breeding.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3