Compliance Testing of Hemp (Cannabis sativa L.) Cultivars for Total Delta-9 THC and Total CBD Using Gas Chromatography with Flame Ionization Detection

Author:

Arsenault Terri L.1ORCID,Prapayotin-Riveros Kitty1,Ammirata Michael A.1,White Jason C.1,Dimkpa Christian O.1

Affiliation:

1. Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA

Abstract

The United States Agriculture Improvement Act passed in December of 2018 legalized the growing of Cannabis sativa containing not more than 0.3% total Delta-9 tetrahydrocannabinol (THC) in the country. While Cannabis sativa has been cultivated for hundreds of years, the illegal status of the plant in the United States, and elsewhere, has hindered the development of plant cultivars that meet this legal definition. To assess sampling strategies, and conformance to the THC limit, 14 cultivars of hemp were grown and tested by using gas chromatography with flame ionization detection for total delta-9 THC and total cannabidiol (CBD) during 2020, 2021 and 2022. Each year, samples of fresh plant material were collected from each cultivar weekly, beginning in mid-August and ending in late October, to examine the rate of increase in THC and CBD for different cultivars and select individual plants. The sampling demonstrated that both CBD and THC increase rapidly over a 1–2-week time frame with maximum concentrations (about 16% and 0.6%, respectively) around late September to early October. The testing of individual plants on the same day for select cultivars showed that while the ratio of CBD to THC remains constant (about 20:1 in compliant hemp) during the growing season, the individual plants are highly variable in concentration. Whereas previous studies have shown cultivar-dependent variability in THC production, this study demonstrated a novel plant-to-plant variability in the levels of THC within the same hemp cultivar. Understanding variability within and between hemp cultivars is useful to determine field sampling strategies and to assess the risk of crop embargoes to growers by compliance regulators.

Publisher

MDPI AG

Reference40 articles.

1. Cannabis: An example of taxonomic neglect;Schultes;Bot. Mus. Lealf. Harv. Univ.,1974

2. Challenges towards revitalizing hemp: A multifaceted crop;Schluttenhofer;Trends Plant Sci.,2017

3. History of cannabis and its preparations in saga, science, and sobriquet;Russo;Chem. Biodivers.,2007

4. Cannabis sativa research trends, challenges, and new-age perspectives;Hussain;iScience,2021

5. Selenium metabolism in hemp (Cannabis sativa L.)-potential for phytoremediation and biofortification;Stonehouse;Environ. Sci. Technol.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3