Phenotypic Characteristics and Occurrence Basis of Leaf Necrotic Spots in Response of Weedy Rice to Imazethapyr

Author:

Zhang Zeyu1,Wang Xianyu1,Zang Jianing1,Lee Dongsun123,Zhu Qian123,Chen Lijuan123

Affiliation:

1. Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China

2. The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China

3. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China

Abstract

Weedy rice is the most challenging weed species to remove in rice production. We found a novel phenotype of seedling leaves which rapidly generates necrotic spots in response to imidazolinone herbicides in weedy rice, but its influencing factors and formation basis are still unknown. In this study, we used the leaf necrotic spot-producing type of weedy rice as the material. First, leaf necrotic spots were defined as physiological and vacuole-mediated cell necrosis by microscopic examination. The imazethapyr concentration was positively correlated with the degree of necrotic spots occurring, while the action site was in accordance with necrosis using herbicide stability tests combined with fluorescence parameters. Furthermore, transcriptome analysis revealed significant differences in the gene expression of endoplasmic reticulum stress and the lipid metabolism membrane structure damage pathway during necrosis, as confirmed by transmission electron microscopy. The light–temperature test also showed that high temperature and intense light could promote the appearance of necrotic spots. These experimental results are helpful in clarifying the process and basis of imazethapyr in inducing the rapid generation of necrotic spots in rice leaves and providing new insight into understanding the mechanism of response to imidazolinone herbicides and the control of weedy rice.

Funder

National Science Foundation of China

Foundation Program of Central Government Guide Local Science

Major Science Program of Yunnan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3