Affiliation:
1. Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca, km. 510, 50830 Villanueva de Gállego, Spain
2. Departamento de Didácticas Específicas, Facultad de Educación, Universisad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain
Abstract
One strategy to mitigate the emergence of bacterial resistance involves reducing antibiotic doses by combining them with natural products, such as trans-cinnamaldehyde (CIN). The objective of this research was to identify in vitro combinations (CIN + commercial antibiotic (ABX)) that decrease the minimum inhibitory concentration (MIC) of seven antibiotics against 14 different Gram-positive and Gram-negative pathogenic bacteria, most of them classified as ESKAPE. MIC values were measured for all compounds using the broth microdilution method. The effect of the combinations on these microorganisms was analyzed through the checkboard assay to determine the type of activity (synergy, antagonism, or addition). This analysis was complemented with a kinetic study of the synergistic combinations. Fifteen synergistic combinations were characterized for nine of the tested bacteria. CIN demonstrated effectiveness in reducing the MIC of chloramphenicol, streptomycin, amoxicillin, and erythromycin (94–98%) when tested on Serratia marcescens, Staphylococcus aureus, Pasteurella aerogenes, and Salmonella enterica, respectively. The kinetic study revealed that when the substances were tested alone at the MIC concentration observed in the synergistic combination, bacterial growth was not inhibited. However, when CIN and the ABX, for which synergy was observed, were tested simultaneously in combination at these same concentrations, the bacterial growth inhibition was complete. This demonstrates the highly potent in vitro synergistic activity of CIN when combined with commercial ABXs. This finding could be particularly beneficial in livestock farming, as this sector witnesses the highest quantities of antimicrobial usage, contributing significantly to antimicrobial resistance issues. Further research focused on this natural compound is thus warranted for this reason.
Funder
Gobierno de Aragón: Departamento de Ciencia, Universidad y Sociedad del Conocimiento
Cátedra NOVALTIA, and Universidad San Jorge
Group IQE
Reference102 articles.
1. World Health Organization (2015). Global Action Plan on Antimicrobial Resistance.
2. Bell, B.G., Schellevis, F., Stobberingh, E., Goossens, H., and Pringle, M. (2014). A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis., 14.
3. The strategies and techniques of drug discovery from natural products;Zhang;Pharmacol. Ther.,2020
4. Phenylpropanoids and its derivatives: Biological activities and its role in food, pharmaceutical and cosmetic industries;Neelam;Crit. Rev. Food Sci. Nutr.,2020
5. Natural products: A lead for drug discovery and development;Chopra;Phytother. Res.,2021
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献