Updating the Knowledge on the Secretory Machinery of Hops (Humulus lupulus L., Cannabaceae)

Author:

Ramos Felipe Paulino12ORCID,Iwamoto Lucas12ORCID,Piva Vítor Hélio12ORCID,Teixeira Simone Pádua1ORCID

Affiliation:

1. Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Ribeirão Preto 14040-903, Brazil

2. Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Ribeirão Preto 14040-901, Brazil

Abstract

Cannabaceae species garner attention in plant research due to their diverse secretory structures and pharmacological potential associated with the production of secondary metabolites. This study aims to update our understanding of the secretory system in Hops (Humulus lupulus L.), an economically important species especially known for its usage in beer production. For that, stems, leaves, roots, and inflorescences were collected and processed for external morphology, anatomical, histochemical, ultrastructural and cytochemical analyses of the secretory sites. Our findings reveal three types of secretory structures comprising the secretory machinery of Hops: laticifer, phenolic idioblasts and glandular trichomes. The laticifer system is articulated, anastomosing and unbranched, traversing all plant organs, except the roots. Phenolic idioblasts are widely dispersed throughout the leaves, roots and floral parts of the species. Glandular trichomes appear as two distinct morphological types: capitate (spherical head) and peltate (radial head) and are found mainly in foliar and floral parts. The often-mixed chemical composition in the secretory sites serves to shield the plant from excessive UVB radiation, elevated temperatures, and damage inflicted by herbivorous animals or pathogenic microorganisms. Besides the exudate from peltate glandular trichomes (lupulin glands), latex and idioblast content are also likely contributors to the pharmacological properties of different Hop varieties, given their extensive presence in the plant body.

Funder

FAPESP

CNPq

CAPES

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3