Response of Carbon-Fixing Bacteria to Patchy Degradation of the Alpine Meadow in the Source Zone of the Yellow River, West China

Author:

Sun Huafang12,Su Xiaoxue1,Jin Liqun1,Li Chengyi1,Kou Jiancun3,Zhang Jing1,Li Xilai1

Affiliation:

1. State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China

2. College of Eco-Environment and Resources, Qinghai University for Nationalities, Xining 810007, China

3. College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China

Abstract

This study aims to enlighten our understanding of the distribution of soil carbon-fixing bacteria (cbbL-harboring bacteria) and their community diversity in differently degraded patches at three altitudes. MiSeq high-throughput sequencing technology was used to analyze the soil carbon-fixing bacteria community diversity of degraded patches and healthy meadow at three altitudes. Redundancy analysis (RDA) and structural equation model (SEM) were used to analyze the correlation and influence path between environmental factors and carbon-fixing bacteria. The results showed that degradation reduced the relative abundance of Proteobacteria from 99.67% to 95.57%. Sulfurifustis, Cupriavidus, and Alkalispirillum were the dominant genera at the three altitudes. Hydrogenophaga and Ectothiorhodospira changed significantly with altitude. RDA results confirmed that available phosphorus (AP) was strongly and positively correlated with Proteobacteria. AP and total nitrogen (TN) were strongly and positively correlated with Hydrogenophaga. Grass coverage and sedge aboveground biomass were strongly and positively correlated with Sulfurifustis and Ectothiorhodospira, respectively. Elevation adversely affected the relative abundance of dominant carbon-fixing bacteria and diversity index by reducing the coverage of grass and soil volumetric moisture content (SVMC) indirectly, and also had a direct positive impact on the Chao1 index (path coefficient = 0.800). Therefore, increasing the content of nitrogen, phosphorus and SVMC and vegetation coverage, especially sedge and grass, will be conducive to the recovery of the diversity of soil carbon-fixing bacteria and improve the soil autotrophic microbial carbon sequestration potential in degraded meadows, especially in high-altitude areas.

Funder

National Natural Sciences Foundation of China

Qinghai Science and Technology Department

111 Project

Qinghai Science and Technology Innovation and Entrepreneurship Team Project

project of ecosystem succession and management direction in the world-class discipline of ecology at Qinghai University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3