Genome-Wide Characterization of Alfin-like Genes in Brassica napus and Functional Analyses of BnaAL02 and BnaAL28 in Response to Nitrogen and Phosphorus Deficiency

Author:

Wu Zexuan123,Liu Shiying123,Zhang Xinyun123,Qian Xingzhi123,Chen Zhuo123,Zhao Huiyan123,Wan Huafang123,Yin Nengwen123,Li Jiana123,Qu Cunmin123ORCID,Du Hai123ORCID

Affiliation:

1. Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China

2. Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China

3. Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China

Abstract

Alfin-like proteins (ALs) form a plant-specific transcription factor (TF) gene family involved in the regulation of plant growth and development, and abiotic stress response. In this study, 30 ALs were identified in Brassica napus ecotype ‘Zhongshuang 11’ genome (BnaALs), and unevenly distributed on 15 chromosomes. Structural characteristic analysis showed that all of the BnaALs contained two highly conserved domains: the N terminal DUF3594 domain and the C-terminal PHD-finger domain. The BnaALs were classified into four groups (Group I-IV), supported by conserved intron–exon and protein motif structures in each group. The allopolyploid event between B. oleracea and B. rapa ancestors and the small-scale duplication events in B. napus both contributed to the large BnaALs expansion. The promoter regions of BnaALs contained multiple abiotic stress cis-elements. The BnaALs in I-IV groups were mainly expressed in cotyledon, petal, root, silique, and seed tissues, and the duplicated gene pairs shared highly similar expression patterns. RNA-seq and RT-qPCR analysis showed that BnaALs were obviously induced by low nitrogen (LN) and low phosphorus (LP) treatments in roots. Overexpressing BnaAL02 and BnaAL28 in Arabidopsis demonstrated their functions in response to LN and LP stresses. BnaAL28 enhanced primary roots’ (PRs) length and lateral roots’ (LRs) number under LP and LN conditions, where BnaAL02 can inhibit LR numbers under the two conditions. They can promote root hair (RH) elongation under LP conditions; however, they suppressed RH elongation under LN conditions. Our result provides new insight into the functional dissection of this family in response to nutrient stresses in plants.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Chongqing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3