Unravelling the Mechanisms of Heavy Metal Tolerance: Enhancement in Hydrophilic Antioxidants and Major Antioxidant Enzymes Is Not Crucial for Long-Term Adaptation to Copper in Chlamydomonas reinhardtii

Author:

Dziuba Julia1,Nowicka Beatrycze1ORCID

Affiliation:

1. Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland

Abstract

Understanding of the mechanisms of heavy metal tolerance in algae is important for obtaining strains that can be applied in wastewater treatment. Cu is a redox-active metal directly inducing oxidative stress in exposed cells. The Cu-tolerant Chlamydomonas reinhardtii strain Cu2, obtained via long-term adaptation, displayed increased guaiacol peroxidase activity and contained more lipophilic antioxidants, i.e., α-tocopherol and plastoquinol, than did non-tolerant strain N1. In the present article, we measured oxidative stress markers; the content of ascorbate, soluble thiols, and proline; and the activity of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in N1 and Cu2 strains grown in the absence or presence of excessive Cu. The Cu2 strain displayed less pronounced lipid peroxidation and increased APX activity compared to N1. The amount of antioxidants was similar in both strains, while SOD and CAT activity was lower in the Cu2 strain. Exposure to excessive Cu led to a similar increase in proline content in both strains and a decrease in ascorbate and thiols, which was more pronounced in the N1 strain. The Cu2 strain was less tolerant to another redox-active heavy metal, namely chromium. Apparently other mechanisms, probably connected to Cu transport, partitioning, and chelation, are more important for Cu tolerance in Cu2 strain.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Reference56 articles.

1. Heavy metals, occurrence and toxicity for plants: A review;Nagajyoti;Environ. Chem. Lett.,2010

2. The role of algae in phytoremediation of heavy metals: A review;Chekroun;J. Mater. Environ. Sci.,2013

3. Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity;Danouche;Heliyon,2021

4. Bioremediation of heavy metals from wastewater: A current perspective on microalgae-based future;Goswami;Lett. Appl. Microbiol.,2021

5. Copper excess-induced large reversible and small irreversible adaptations in a population of Chlamydomonas reinhardtii CW15 (Chlorophyta);Waloszek;Acta Soc. Bot. Pol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3