In Pursuit of Optimal Quality: Cultivar-Specific Drying Approaches for Medicinal Cannabis

Author:

Birenboim Matan12,Brikenstein Nimrod12,Duanis-Assaf Danielle1ORCID,Maurer Dalia3,Chalupowicz Daniel3,Kenigsbuch David3,Shimshoni Jakob A.1ORCID

Affiliation:

1. Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel

2. Department of Plant Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel

3. Department of Postharvest Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel

Abstract

A limited number of studies have examined how drying conditions affect the cannabinoid and terpene content in cannabis inflorescences. In the present study, we evaluated the potential of controlled atmosphere drying chambers for drying medicinal cannabis inflorescence. Controlled atmosphere drying chambers were found to reduce the drying and curing time by at least 60% compared to traditional drying methods, while preserving the volatile terpene content. On the other hand, inflorescences subjected to traditional drying were highly infested by Alternaria alternata and also revealed low infestation of Botrytis cinerea. In the high-THC chemovar (“240”), controlled N2 and atm drying conditions preserved THCA concentration as compared to the initial time point (t0). On the other hand, in the hybrid chemovar (“Gen12”) all of the employed drying conditions preserved THCA and CBDA content. The optimal drying conditions for preserving monoterpenes and sesquiterpenes in both chemovars were C5O5 (5% CO2, 5% O2, and 90% N2) and pure N2, respectively. The results of this study suggest that each chemovar may require tailored drying conditions in order to preserve specific terpenes and cannabinoids. Controlled atmosphere drying chambers could offer a cost-effective, fast, and efficient drying method for preserving cannabinoids and terpenes during the drying process while reducing the risk of mold growth.

Funder

Israeli Ministry of Agriculture

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3