Identification of Quantitative Trait Loci (QTL) for Sucrose and Protein Content in Soybean Seed

Author:

Jamison Daniel R.1,Chen Pengyin1,Hettiarachchy Navam S.2,Miller David M.1,Shakiba Ehsan1ORCID

Affiliation:

1. Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA

2. Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA

Abstract

Protein and sugar content are important seed quality traits in soybean because they improve the value and sustainability of soy food and feed products. Thus, identifying Quantitative Trait Loci (QTL) for soybean seed protein and sugar content can benefit plant breeders and the soybean market by accelerating the breeding process via marker-assisted selection. For this study, a population of recombinant inbred lines (RILs) was developed from a cross between R08-3221 (high protein and low sucrose) and R07-2000 (high sucrose and low protein). Phenotypic data for protein content were taken from the F2:4 and F2:5 generations. The DA7250 NIR analyzer and HPLC instruments were used to analyze total seed protein and sucrose content. Genotypic data were generated using analysis via the SoySNP6k chip. A total of four QTLs were identified in this study. Two QTLs for protein content were located on chromosomes 11 and 20, and two QTLs associated with sucrose content were located on chromosomes 14 and. 11, the latter of which co-localized with detected QTLs for protein, explaining 10% of the phenotypic variation for protein and sucrose content in soybean seed within the study population. Soybean breeding programs can use the results to improve soybean seed quality.

Funder

United Soybean Board

Arkansas Soybean Promotion Board

Publisher

MDPI AG

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3