Impacts of Elevated CO2 and a Nitrogen Supply on the Growth of Faba Beans (Vicia faba L.) and the Nitrogen-Related Soil Bacterial Community

Author:

Dong Xingshui1ORCID,Lin Hui2,Wang Feng2,Shi Songmei1,Wang Zhihui3,Sharifi Sharifullah1ORCID,Ma Junwei2,He Xinhua145ORCID

Affiliation:

1. National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region, Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400715, China

2. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

3. State Key Laboratory of Hydraulics and Mountain River Engineering and College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China

4. Department of Land, Air and Water Resources, University of California at Davis, Davis, CA 90616, USA

5. School of Biological Sciences, University of Western Australia, Perth 6009, Australia

Abstract

Ecosystems that experience elevated CO2 (eCO2) are crucial interfaces where intricate interactions between plants and microbes occur. This study addressed the impact of eCO2 and a N supply on faba bean (Vicia faba L.) growth and the soil microbial community in auto-controlled growth chambers. In doing so, two ambient CO2 concentrations (aCO2, daytime/nighttime = 410/460 ppm; eCO2, 550/610 ppm) and two N supplement levels (without a N supply—N0—and 100 mg N as urea per kg of soil—N100) were applied. The results indicated that eCO2 mitigated the inhibitory effects of a N deficiency on legume photosynthesis and affected the CO2 assimilation efficiency, in addition to causing reduced nodulation. While the N addition counteracted the reductions in the N concentrations across the faba beans’ aboveground and belowground plant tissues under eCO2, the CO2 concentrations did not significantly alter the soil NH4+-N or NO3−-N responses to a N supply. Notably, under both aCO2 and eCO2, a N supply significantly increased the relative abundance of Nitrososphaeraceae and Nitrosomonadaceae, while eCO2 specifically reduced the Rhizobiaceae abundance with no significant changes under aCO2. A redundancy analysis (RDA) highlighted that the soil pH (p < 0.01) had the most important influence on the soil microbial community. Co-occurrence networks indicated that the eCO2 conditions mitigated the impact of a N supply on the reduced structural complexity of the soil microbial communities. These findings suggest that a combination of eCO2 and a N supply to crops can provide potential benefits for managing future climate change impacts on crop production.

Funder

Zhejiang Provincial Key Research and Development Program

Natural Science Foundation of China

Basic Public Welfare Research Plan of Zhejiang Province

Zhejiang Province High-level Talent Project

Sichuan Science and Technology Program

Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education) at Southwest University, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3