Combined Application of Biochar and Plant Growth-Promoting Rhizobacteria Improves Heavy Metal and Drought Stress Tolerance in Zea mays

Author:

Anbuganesan Vadivel1ORCID,Vishnupradeep Ramasamy1,Bruno L. Benedict1ORCID,Sharmila Krishnan1,Freitas Helena2ORCID,Rajkumar Mani1ORCID

Affiliation:

1. Department of Environmental Sciences, Bharathiar University, Coimbatore 641046, India

2. Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal

Abstract

Plants are often exposed to multiple stresses, including heavy metals (HM) and drought, which limit the plant growth and productivity. Though biochar or plant growth-promoting rhizobacteria (PGPR) have been widely used for alleviating HM or drought stress in plants, the study of the effects of combined treatment with biochar and PGPR under simultaneous HM and drought stress is limited. This study investigated individual and combined effects of groundnut shell biochar (GS-BC) and PGPR Bacillus pseudomycoides strain ARN7 on Zea mays growth, physiology, and HM accumulation, along with their impact on soil enzymes under HM (Ni and Zn), drought, or HM+drought stress. It was observed that even under HM+drought stress, Z. mays growth, total chlorophyll, proteins, phenolics, and relative water contents were increased in response to combined GS-BC and ARN7 treatment. Furthermore, the combined treatment positively influenced plant superoxide dismutase, ascorbate peroxidase, and catalase activities, while reducing electrolyte leakage and phenolics, malondialdehyde, and proline under HM, drought, or HM+drought stress. Interestingly, the combined GS-BC and ARN7 treatment decreased HM accumulation and the bioaccumulation factor in Z. mays, highlighting that the combined treatment is suitable for improving HM phytostabilization. Additionally, GS-BC increased soil enzymatic activities and ARN7 colonization irrespective of HM and drought stress. As far as we know, this study is the first to illustrate that combined biochar and PGPR treatment could lessen the adverse effects of both HM and drought, suggesting that such treatment can be used in water-deficient HM-contaminated areas to improve plant growth and reduce HM accumulation in plants.

Funder

Department of Science and Technology, Government of India

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3