Lanthanum Significantly Contributes to the Growth of the Fine Roots’ Morphology and Phosphorus Uptake Efficiency by Increasing the Yield and Quality of Glycyrrhiza uralensis Taproots

Author:

Jia Tingting1,Gu Junjun1,Ma Miao1,Song Yuyang2

Affiliation:

1. Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Shihezi 832003, China

2. Agriculture College, Shihezi University, Shihezi 832003, China

Abstract

The occurrence of different degrees of phosphorus deficiency in the vast majority of G. uralensis cultivation regions worldwide is common. There is a pressing need within the cultivated G. uralensis industry to identify appropriate exogenous substances that can enhance the uptake of phosphorus and improve both the yield and quality of the taproots of G. uralensis. This study was conducted to investigate the fine root and taproot morphology, physiological characteristics, and secondary metabolite accumulation in response to the supply of varying concentrations of LaCl3 to G. uralensis, to determine the optimal concentration of LaCl3 that can effectively enhance the yield and quality of G. uralensis’s taproots, while also alleviating its reliance on soil phosphate fertilizer. The findings indicate that the foliar application of lanthanum enhanced root activity and increased APase activity, eliciting alterations in the fine root morphology, leading to promoting the accumulation of biomass in grown G. uralensis when subjected to P-deficient conditions. Furthermore, it was observed that the nutrient uptake of G. uralensis was significantly improved when subjected to P-deficient conditions but treated with LaCl3. Additionally, the yield and quality of the medicinal organs of G. uralensis were significantly enhanced.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3