Affiliation:
1. Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Cádiz, Spain
2. Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Cádiz, Spain
Abstract
Glucosinolates, the main secondary metabolites accumulated in cruciferous flora, have a major impact on fortifying plant immunity against diverse pathogens. Although Botrytis cinerea exhibits varying sensitivity to these compounds, current research has yet to fully understand the intricate mechanisms governing its response to glucosinolates. Different species of the genus Botrytis were exposed to glucosinolate-derived isothiocyanates, revealing that B. fabae, B. deweyae, and B. convolute, species with the mfsG transporter gene (Bcin06g00026) not detected with PCR, were more sensitive to isothiocyanates than Botrytis species containing that gene, such as B. cinerea, B. pseudocinerea, and B. byssoidea. This finding was further corroborated by the inability of species with the mfsG gene not detected with PCR to infect plants with a high concentration of glucosinolate-derived isothiocyanates. These results challenge established correlations, revealing varying aggressiveness on different plant substrates. An expression analysis highlighted the gene’s induction in the presence of isothiocyanate, and a bioinformatic investigation identified homologous genes in other Botrytis species. Our study underscored the importance of advanced biotechnology to help understand these proteins and thus offer innovative solutions for agriculture.