Maize, Peanut, and Millet Rotations Improve Crop Yields by Altering the Microbial Community and Chemistry of Sandy Saline–Alkaline Soils

Author:

Zhang Liqiang1ORCID,Zhu Jianguo1,Zhang Yueming1,Xia Kexin1,Yang Yuhan1,Wang Hongyu1,Li Qiuzhu1,Cui Jinhu1

Affiliation:

1. College of Plant Science, Jilin University, Changchun 130012, China

Abstract

Crop rotation increases crop yield, improves soil health, and reduces plant disease. However, few studies were conducted on the use of intensive cropping patterns to improve the microenvironment of saline soils. The present study thoroughly evaluated the impact of a three-year maize–peanut–millet crop rotation pattern on the crop yield. The rhizosphere soil of the crop was collected at maturity to assess the effects of crop rotation on the composition and function of microbial communities in different tillage layers (0–20 cm and 20–40 cm) of sandy saline–alkaline soils. After three years of crop rotation, the maize yield and economic benefits rose by an average of 32.07% and 22.25%, respectively, while output/input grew by 10.26%. The pH of the 0–40 cm tillage layer of saline–alkaline soils decreased by 2.36%, organic matter rose by 13.44%–15.84%, and soil-available nutrients of the 0–20 cm tillage layer increased by 11.94%–69.14%. As compared to continuous cropping, crop rotation boosted soil nitrogen and phosphorus metabolism capacity by 8.61%–88.65%. Enrichment of Actinobacteria and Basidiomycota increased crop yield. Crop rotation increases microbial community richness while decreasing diversity. The increase in abundance can diminish competitive relationships between species, boost synergistic capabilities, alter bacterial and fungal community structure, and enhance microbial community function, all of which elevate crop yields. The obtained insights can contribute to achieving optimal management of intensive cultivation patterns and green sustainable development.

Funder

the science and technology development plan of Jilin Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3