Affiliation:
1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
2. Institute of Biotechnology, Jiaxing Academy of Agricultural Science, Jiaxing 314016, China
Abstract
Microplastic might affect the crop yield, nitrogen (N) use efficiency and reactive N losses from agricultural soil systems. However, evaluation of these effects in infertile soil planted with different rice cultivars is lacking. We conducted a soil column experiment to determine the influence of a typical microplastic polyethylene (PE) input into an infertile soil with 270 kg N ha−1 and planted with two rice cultivars, i.e., a common rice Nangeng 5055 (NG) and a hybrid rice Jiafengyou 6 (JFY). The results showed that JFY produced a significantly (p < 0.05) greater grain yield than NG (61.6–66.2 vs. 48.2–52.5 g pot−1) but was not influenced by PE. Overall, PE hardly changed the N use efficiency of NG and JFY. Unexpectedly, PE significantly (p < 0.05) increased the total amino acid content of NG. Compared with JFY, NG volatilized significantly (p < 0.05) more ammonia (NH3) (0.84–0.92 vs. 0.64–0.67 g N pot−1) but emitted equal nitrous oxide (N2O). PE exerted no effect on either NH3 volatilization or the N2O emission flux pattern and cumulative losses of the rice growth cycle, whether with NG or JFY. Some properties of tested soils changed after planting with different rice cultivars and incorporating with microplastic. In conclusion, the rice production, N use efficiency, NH3 volatilization and N2O emission from the N-fertilized infertile soil were pronouncedly influenced by the rice cultivar, but not the PE. However, PE influenced the grain quality of common rice and some properties of tested soils with both rice cultivars.
Funder
Zhejiang Provincial Natural Science Foundation of China
Priority Academic Program Development of Jiangsu Higher Education Institutions
Postgraduate Research & Practice Innovation Program of Jiangsu Province