Physiological and Transcriptomic Analyses Reveal the Mechanisms Underlying Methyl Jasmonate-Induced Mannitol Stress Resistance in Banana

Author:

Yu Jiaxuan12,Tang Lu1,Qiao Fei3ORCID,Liu Juhua2,Li Xinguo12

Affiliation:

1. School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China

2. National Key Laboratory for Tropical Crop Breeding, Haikou 570228, China

3. Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571737, China

Abstract

Exogenous methyl jasmonate (MeJA) application has shown promising effects on plant defense under diverse abiotic stresses. However, the mechanisms underlying MeJA-induced stress resistance in bananas are unclear. Therefore, in this study, we treated banana plants with 100 μM MeJA before inducing osmotic stress using mannitol. Plant phenotype and antioxidant enzyme activity results demonstrated that MeJA improved osmotic stress resistance in banana plants. Thereafter, to explore the molecular mechanisms underlying MeJA-induced osmotic stress resistance in banana seedlings, we conducted high-throughput RNA sequencing (RNA-seq) using leaf and root samples of “Brazilian” banana seedlings treated with MeJA for 0 h and 8 h. RNA-seq analysis showed that MeJA treatment upregulated 1506 (leaf) and 3341 (root) genes and downregulated 1768 (leaf) and 4625 (root) genes. Then, we performed gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses on the differentially expressed genes. We noted that linoleic acid metabolism was enriched in both root and leaf samples, and the genes of this pathway exhibited different expression patterns; 9S-LOX genes were highly induced by MeJA in the leaves, whereas 13S-LOX genes were highly induced in the roots. We also identified the promoters of these genes, as the differences in response elements may contribute to tissue-specific gene expression in response to MeJA application in banana seedlings. Overall, the findings of this study provide insights into the mechanisms underlying abiotic stress resistance in banana that may aid in the improvement of banana varieties relying on molecular breeding.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3