Review of Crop Wild Relative Conservation and Use in West Asia and North Africa

Author:

Maxted Nigel1,Magos Brehm Joana1ORCID,Abulaila Khaled2,Al-Zein Mohammad Souheil34,Kehel Zakaria4ORCID,Yazbek Mariana4

Affiliation:

1. School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

2. National Agricultural Research Center, P.O. Box 639, Baq’a 19381, Jordan

3. Department of Biology and Natural History Museum, American University of Beirut, P.O. Box 11-0236, Beirut 1107-2020, Lebanon

4. Genetic Resources Section, International Center for Agricultural Research in the Dry Areas, Beirut 1108-2010, Lebanon

Abstract

Ensuring global food security in the face of climate change is critical to human survival. With a predicted human population of 9.6 billion in 2050 and the demand for food supplies expected to increase by 60% globally, but with a parallel potential reduction in crop production for wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1% by the end of the century, maintaining future food security will be a challenge. One potential solution is new climate-smart varieties created using the breadth of diversity inherent in crop wild relatives (CWRs). Yet CWRs are threatened, with 16–35% regarded as threatened and a significantly higher percentage suffering genetic erosion. Additionally, they are under-conserved, 95% requiring additional ex situ collections and less than 1% being actively conserved in situ; they also often grow naturally in disturbed habitats limiting standard conservation measures. The urgent requirement for active CWR conservation is widely recognized in the global policy context (Convention on Biological Diversity post-2020 Global Biodiversity Framework, UN Sustainable Development Goals, the FAO Second Global Plan of Action for PGRFA, and the FAO Framework for Action on Biodiversity for Food and Agriculture) and breeders highlight that the lack of CWR diversity is unnecessarily limiting crop improvement. CWRs are not spread evenly across the globe; they are focused in hotspots and the hottest region for CWR diversity is in West Asia and North Africa (WANA). The region has about 40% of global priority taxa and the top 17 countries with maximum numbers of CWR taxa per unit area are all in WANA. Therefore, improved CWR active conservation in WANA is not only a regional but a critical global priority. To assist in the achievement of this goal, we will review the following topics for CWRs in the WANA region: (1) conservation status, (2) community-based conservation, (3) threat status, (4) diversity use, (5) CURE—CWR hub: (ICARDA Centre of Excellence), and (6) recommendations for research priorities. The implementation of the recommendations is likely to significantly improve CWRs in situ and ex situ conservation and will potentially at least double the availability of the full breadth of CWR diversity found in WANA to breeders, and so enhance regional and global food and nutritional security.

Publisher

MDPI AG

Reference76 articles.

1. UN DESA (2023). The Sustainable Development Goals Report 2023: Special Edition—July 2023, UN DESA.

2. FAO (2011). Second Global Plan of Action for Plant Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the UN.

3. Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., and Genova, R.C. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, Cambridge University Press. Fifth Assessment Report of the Intergovernmental Panel on Climate, Change.

4. FAO (2015). Agroecology for Food Security and Nutrition: Proceedings of the FAO International Symposium, 18–19 September 2014, Rome, Italy, Food and Agriculture Organization of the UN.

5. Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild;Tanksley;Science,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3