Elevation Influences Belowground Biomass Proportion in Forests by Affecting Climatic Factors, Soil Nutrients and Key Leaf Traits

Author:

Zhang Xing1,Wang Yun1,Wang Jiangfeng1,Yu Mengyao1,Zhang Ruizhi1,Mi Yila1,Xu Jiali1,Jiang Ruifang2,Gao Jie13

Affiliation:

1. Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China

2. Xinjiang Uyghur Autonomous Region Forestry Planning Institute, Urumqi 830046, China

3. Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100863, China

Abstract

Forest biomass allocation is a direct manifestation of biological adaptation to environmental changes. Studying the distribution patterns of forest biomass along elevational gradients is ecologically significant for understanding the specific impacts of global change on plant resource allocation strategies. While aboveground biomass has been extensively studied, research on belowground biomass remains relatively limited. Furthermore, the patterns and driving factors of the belowground biomass proportion (BGBP) along elevational gradients are still unclear. In this study, we investigated the specific influences of climatic factors, soil nutrients, and key leaf traits on the elevational pattern of BGBP using data from 926 forests at 94 sites across China. In this study, BGBP data were calculated from the root biomass to the depth of 50 cm. Our findings indicate considerable variability in forest BGBP at a macro scale, showing a significant increasing trend along elevational gradients (p < 0.01). BGBP significantly decreases with increasing temperature and precipitation and increases with annual mean evapotranspiration (MAE) (p < 0.01). It decreases significantly with increasing soil phosphorus content and increases with soil pH (p < 0.01). Key leaf traits (leaf nitrogen (LN) and leaf phosphorus (LP)) are positively correlated with BGBP. Climatic factors (R2 = 0.46) have the strongest explanatory power for the variation in BGBP along elevations, while soil factors (R2 = 0.10) and key leaf traits (R2 = 0.08) also play significant roles. Elevation impacts BGBP directly and also indirectly through influencing such as climate conditions, soil nutrient availability, and key leaf traits, with direct effects being more pronounced than indirect effects. This study reveals the patterns and controlling factors of forests’ BGBP along elevational gradients, providing vital ecological insights into the impact of global change on plant resource allocation strategies and offering scientific guidance for ecosystem management and conservation.

Funder

Xinjiang Normal University Young Top Talent Project

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3