Soil and Foliar Zinc Biofortification of Triticale (x Triticosecale) under Mediterranean Conditions: Effects on Forage Yield and Quality

Author:

García-Latorre Carlos1ORCID,Reynolds-Marzal María Dolores1,De la Peña-Lastra Saúl1ORCID,Pinheiro Nuno2,Poblaciones María José1ORCID

Affiliation:

1. Department of Agronomy and Forest Environment Engineering, University of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain

2. National Institute for Agricultural and Veterinary Research (INIAV), Estrada de Gil Vaz, 7350-228 Elvas, Portugal

Abstract

Zinc (Zn) deficiency represents a significant global concern, affecting both plant and human health, particularly in regions with Zn-depleted soils. Agronomic biofortification strategies, such as the application of Zn fertilizers, offer a cost-effective approach to increase Zn levels in crops. This study aimed to assess the efficacy of soil and foliar Zn biofortification, applied as an aqueous solution of 0.5% zinc sulphate (ZnSO4·7H2O), on triticale (x Triticosecale) grown under Mediterranean conditions. The study was conducted over two growing seasons (2017/18 and 2018/19) in southern Spain, evaluating the effects on biomass yield; forage quality, including crude protein, Van Soest detergent fiber, organic matter digestibility, and relative forage value; and nutrient accumulation. Soil treatment consisted in the application of 50 kg of ZnSO4·7H2O ha−1 solely at the beginning of the first campaign to assess the residual effect on the second year. In contrast, the foliar treatment consisted of two applications of 4 kg of ZnSO4·7H2O ha−1 per campaign, one at the beginning of tillering and the other at the appearance of the first node. The foliar application increased the Zn content of the forage to adequate levels, while the soil application resulted in a 33% increase in biomass production, which is particularly beneficial for farmers. Overall quality was favored by the combined soil + foliar application, and no adverse antagonistic effects on other nutrients were detected. Instead, a synergistic interaction between Se and Zn was observed, which improved the efficacy of this important micronutrient for livestock and human wellbeing.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3