The Energy Requirement for Supplemental Greenhouse Lighting Can Be Reduced by Considering ‘Excess’ Light from the Previous Day

Author:

Jayalath Theekshana C.1,van Iersel Marc W.1ORCID,Ferrarezi Rhuanito Soranz1ORCID

Affiliation:

1. Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences Building, Athens, GA 30602, USA

Abstract

The sunlight greenhouse crops receive varies and is often insufficient for consistent year-round growth in greenhouses. Supplemental lighting is commonly applied in winter, but this practice has a significant energy cost, accounting for 10–30% of operating expenses and impacting greenhouse profitability. Greenhouse lights are traditionally adjusted based on sunlight intensity to meet crops’ daily light requirements. However, if plants can withstand lower daily light integrals (DLI) after a sunny day without reducing the growth, there is potential to reduce the energy required for supplemental lighting and increase the profit. To determine whether excess light received one day can be ‘carried over’ to the next, we grew oakleaf lettuce (Lactuca sativa ‘Green Salad Bowl’ and ‘Red Salad Bowl’) under six lighting regimes inside a vertical farm. Plants in all treatments received an average DLI of 15 mol·m−2·d−1, but DLIs alternated from day-to-day (15/15, 17.5/12.5, 20/10, 22.5/7.5, 25/5, and 27.5/2.5 mol·m−2·d−1), resulting in DLI fluctuations from 0 to 25 mol·m−2·d−1. Plants had similar leaf area (~800 cm2/plant) and dry weight (~1.8 g/plant) when grown with DLI fluctuations from 0 to 15 mol·m−2·d−1, while higher DLI fluctuation reduced growth. To confirm this DLI “carrying-over” effect on plants grown under sunlight with supplemental light, we conducted a second study in a greenhouse with ‘Green Salad Bowl’ lettuce. In this study, plants were grown with five different DLI fluctuations (15/15, 16.75/13.25, 18.5/11.5, 20.25/9.75, and 22/8 mol·m−2·d−1), ranging from 0 to 14 mol·m−2·d−1, while maintaining an average DLI of 15 mol·m−2·d−1 in all the treatments. We observed similar leaf area (~750 cm2/plant) and dry weight (~1.8 g/plant) in lettuce plants grown with DLI fluctuations from 0 to 10.5 mol·m−2·d−1. Higher DLI fluctuations reduced growth. Hence, carrying excess light from a sunny to an overcast day is possible within limits. Our study concluded that the DLI requirement can be reduced by approximately 5.25 mol·m−2·d−1 on the day following a sunny day. By analyzing historical weather data from five US locations, we quantified the potential annual energy savings from incorporating this ‘carrying-over DLI’ concept. This approach resulted in annual energy savings of approximately 75–190 MWh/ha in greenhouse lettuce production. Such reductions in supplemental lighting energy will enhance the profitability and sustainability of the greenhouse industry.

Funder

USDA-NIFA-SCRI

Publisher

MDPI AG

Reference26 articles.

1. Mapping monthly distribution of daily light integrals across the contiguous United States;Korczynski;HortTechnology,2002

2. Sun, Y., Sun, Y., Sun, Z., Li, P., and Li, C. (2015, January 7). Mapping monthly distribution of daily light integrals across China. Proceedings of the Annual Conference of ASHS, New Orleans, LA, USA.

3. Runkle, E. (Greenhouse Production News, 2019). DLI ‘Requirements’, Greenhouse Production News.

4. Controlling greenhouse light to a consistent daily integral;Albright;Trans. ASAE,2000

5. The effect of daily light integral on bedding plant growth and flowering;Faust;HortScience,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3