Actively Expressed Intergenic Genes Generated by Transposable Element Insertions in Gossypium hirsutum Cotton

Author:

Guan Yongzhuo1,Zhou Mingao1ORCID,Zhang Congyu1,Han Zixuan1,Zhang Yinbao2,Wu Zhiguo1ORCID,Zhu Yuxian1345ORCID

Affiliation:

1. College of Life Sciences, Wuhan University, Wuhan 430072, China

2. Xinjiang Jinfengyuan Seed Co., Ltd., Aksu City 843100, China

3. Institute for Advanced Studies, Wuhan University, Wuhan 430072, China

4. Hubei Hongshan Laboratory, Wuhan 430072, China

5. TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China

Abstract

The genomes and annotated genes of allotetraploid cotton Gossypium hirsutum have been extensively studied in recent years. However, the expression, regulation, and evolution of intergenic genes (ITGs) have not been completely deciphered. In this study, we identified a novel set of actively expressed ITGs in G. hirsutum cotton, through transcriptome profiling based on deep sequencing data, as well as chromatin immunoprecipitation, followed by sequencing (ChIP-seq) of histone modifications and how the ITGs evolved. Totals of 17,567 and 8249 ITGs were identified in G. hirsutum and Gossypium arboreum, respectively. The expression of ITGs in G. hirsutum was significantly higher than that in G. arboreum. Moreover, longer exons were observed in G. hirsutum ITGs. Notably, 42.3% of the ITGs from G. hirsutum were generated by the long terminal repeat (LTR) insertions, while their proportion in genic genes was 19.9%. The H3K27ac and H3K4me3 modification proportions and intensities of ITGs were equivalent to genic genes. The H3K4me1 modifications were lower in ITGs. Additionally, evolution analyses revealed that the ITGs from G. hirsutum were mainly produced around 6.6 and 1.6 million years ago (Mya), later than the pegged time for genic genes, which is 7.0 Mya. The characterization of ITGs helps to elucidate the evolution of cotton genomes and shed more light on their biological functions in the transcriptional regulation of eukaryotic genes, along with the roles of histone modifications in speciation and diversification.

Funder

National Natural Science Foundation of China

Winall Hi-tech Seed Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3