Adaptation of the Invasive Plant Sphagneticola trilobata (L.) Pruski to Drought Stress

Author:

Zhang Qilei12,Wang Ye1,Weng Zhilong1,Chen Guangxin1,Peng Changlian1ORCID

Affiliation:

1. Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China

2. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China

Abstract

Invasive species and their hybrids with native species threaten biodiversity. However, there are few reports on the drought stress adaptability of invasive species Sphagneticola trilobata (L.) Pruski and its hybrid with native species S. calendulacea. In this study, relative water content (RWC), abscisic acid (ABA), reactive oxygen species, antioxidant capacity, and photosynthetic capacity were measured in the hybrid and its parents under drought stress (13% PEG-6000). Under drought stress, the ABA content and RWC in S. trilobata were the highest. RWC decreased by 28% in S. trilobata, 41% in S. calendulacea, and 33% in the hybrid. Activities of the antioxidant enzymes in S. trilobata were the highest, and the accumulation of malondialdehyde (MDA) was the lowest (4.3 μg g−1), while it was the highest in S. calendulacea (6.9 μg g−1). The maximum photochemical efficiency (Fv/Fm) of S. calendulacea was the lowest (0.71), and it was the highest in S. trilobata (7.5) at 8 h under drought stress. The results suggest that the drought resistance of the hybrid was weaker than that of S. trilobata but stronger than that of S. calendulacea. Therefore, the survival of S. calendulacea may be threatened by both the invasive species S. trilobata and the hybrid.

Funder

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3