Phytohormone Production by the Endophyte Bacillus safensis TS3 Increases Plant Yield and Alleviates Salt Stress

Author:

Chebotar Vladimir K.1ORCID,Zaplatkin Alexander N.1,Chizhevskaya Elena P.1,Gancheva Maria S.12ORCID,Voshol Gerben P.3,Malfanova Natalia V.3,Baganova Maria E.1,Khomyakov Yuriy V.4,Pishchik Veronika N.1ORCID

Affiliation:

1. All-Russia Research Institute for Agricultural Microbiology, Podbel’skogo Shosse 3, Pushkin, 196608 St. Petersburg, Russia

2. Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 St. Petersburg, Russia

3. Institute of Biology Leiden, Sylviusweg 72, 2333 BE Leiden, The Netherlands

4. Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia

Abstract

Endophytic bacteria can be used to overcome the effect of salinity stress and promote plant growth and nutrient uptake. Bacillus safensis colonizes a wide range of habitats due to survival in extreme environments and unique physiological characteristics, such as a high tolerance for salt, heavy metals, and ultraviolet and gamma radiations. The aim of our study was to examine the salt resistance of the endophytic strain TS3 B. safensis and its ability to produce phytohormones and verify its effect on plant yield in field trials and the alleviation of salt stress in pot experiments. We demonstrate that the strain TS3 is capable of producing enzymes and phytohormones such as IAA, ABA and tZ. In pot experiments with radish and oat plants in salinization, the strain TS3 contributed to the partial removal of the negative effect of salinization. The compensatory effect of the strain TS3 on radish plants during salinization was 46.7%, and for oats, it was 108%. We suppose that such a pronounced effect on the plants grown and the salt stress is connected with its ability to produce phytohormones. Genome analysis of the strain TS3 showed the presence of the necessary genes for the synthesis of compounds responsible for the alleviation of the salt stress. Strain B. safensis TS3 can be considered a promising candidate for developing biofertilizer to alleviate salt stress and increase plant yield.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3