Application of Hyperspectral Technology with Machine Learning for Brix Detection of Pastry Pears

Author:

Ouyang Hongkun1ORCID,Tang Lingling1,Ma Jinglong1,Pang Tao1

Affiliation:

1. College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya’an 625000, China

Abstract

Sugar content is an essential indicator for evaluating crisp pear quality and categorization, being used for fruit quality identification and market sales prediction. In this study, we paired a support vector machine (SVM) algorithm with genetic algorithm optimization to reliably estimate the sugar content in crisp pears. We evaluated the spectral data and actual sugar content in crisp pears, then applied three preprocessing methods to the spectral data: standard normal variable transformation (SNV), multivariate scattering correction (MSC), and convolution smoothing (SG). Support vector regression (SVR) models were built using processing approaches. According to the findings, the SVM model preprocessed with convolution smoothing (SG) was the most accurate, with a correlation coefficient 0.0742 higher than that of the raw spectral data. Based on this finding, we used competitive adaptive reweighting (CARS) and the continuous projection algorithm (SPA) to select key representative wavelengths from the spectral data. Finally, we used the retrieved characteristic wavelength data to create a support vector machine model (GASVR) that was genetically tuned. The correlation coefficient of the SG–GASVR model in the prediction set was higher by 0.0321 and the root mean square prediction error (RMSEP) was lower by 0.0267 compared with those of the SG–SVR model. The SG–CARS–GASVR model had the highest correlation coefficient, at 0.8992. In conclusion, the developed SG–CARS–GASVR model provides a reliable method for detecting the sugar content in crisp pear using hyperspectral technology, thereby increasing the accuracy and efficiency of the quality assessment of crisp pear.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3