ICPNet: Advanced Maize Leaf Disease Detection with Multidimensional Attention and Coordinate Depthwise Convolution

Author:

Yang Jin1,Zhu Wenke2,Liu Guanqi1,Dai Weisi1,Xu Zhuonong1ORCID,Wan Li1,Zhou Guoxiong1ORCID

Affiliation:

1. College of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha 410004, China

2. College of Bangor, Central South University of Forestry and Technology, Changsha 410004, China

Abstract

Maize is an important crop, and the detection of maize diseases is critical for ensuring food security and improving agricultural production efficiency. To address the challenges of difficult feature extraction due to the high similarity among maize leaf disease species, the blurring of image edge features, and the susceptibility of maize leaf images to noise during acquisition and transmission, we propose a maize disease detection method based on ICPNet (Integrated multidimensional attention coordinate depthwise convolution PSO (Particle Swarm Optimization)-Integrated lion optimisation algorithm network). Firstly, we introduce a novel attention mechanism called Integrated Multidimensional Attention (IMA), which enhances the stability and responsiveness of the model in detecting small speckled disease features by combining cross-attention and spatial channel reconstruction methods. Secondly, we propose Coordinate Depthwise Convolution (CDC) to enhance the accuracy of feature maps through multi-scale convolutional processing, allowing for better differentiation of the fuzzy edges of maize leaf disease regions. To further optimize model performance, we introduce the PSO-Integrated Lion Optimisation Algorithm (PLOA), which leverages the exploratory stochasticity and annealing mechanism of the particle swarm algorithm to enhance the model’s ability to handle mutation points while maintaining training stability and robustness. The experimental results demonstrate that ICPNet achieved an average accuracy of 88.4% and a precision of 87.3% on the self-constructed dataset. This method effectively extracts the tiny and fuzzy edge features of maize leaf diseases, providing a valuable reference for disease control in large-scale maize production.

Funder

National Natural Science Foundation in China

Publisher

MDPI AG

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3