Genetic Differentiation and Relationship among Castanopsis chinensis, C. qiongbeiensis, and C. glabrifolia (Fagaceae) as Revealed by Nuclear SSR Markers

Author:

Wu Yang1,Yang Kai1,Wen Xiangying2,Sun Ye1ORCID

Affiliation:

1. Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China

2. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

Abstract

Castanopsis chinensis (Spreng.) Hance is widespread in the subtropical forests of China. Castanopsis qiongbeiensis G.A. Fu and Castanopsis glabrifolia J. Q. Li & Li Chen are limited to the coastal beaches of Wenchang county in the northeast of Hainan Island, and have similar morphological characteristics to C. chinensis. It is supposed that C. qiongbeiensis and C. glabrifolia are closely related to C. chinensis. In the present study, the genetic differentiation, gene flow, and genetic relationship of C. chinensis, C. qiongbeiensis, and C. glabrifolia were investigated by using 15 nuclear microsatellite markers; a total of 308 individuals from 17 populations were sampled in the three species. The allelic variation of nuclear microsatellites revealed moderate but significant genetic differentiation (FCT = 0.076) among C. chinensis, C. qiongbeiensis, and C. glabrifolia, and genetic differentiation between C. chinensis and C. glabrifolia was larger than that between C. chinensis and C. qiongbeiensis. Demographic simulations revealed unidirectional gene flow from C. chinensis to C. glabrifolia and C. qiongbeiensis, which highlight dispersal from mainland to island. The isolation effect of Qiongzhou Strait increased the genetic differentiation of species on both sides of the strait; however, the differentiation was diminished by gene flow that occurred during the historical period when Hainan Island was connected to mainland China. Our results supported the argument that C. glabrifolia should be considered an independent species and argued that C. qiongbeiensis should be regarded as an incipient species and independent conservation unit.

Funder

South China Agricultural University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3