Pseudomonas taetrolens ULE-PH5 and Pseudomonas sp. ULE-PH6 Isolated from the Hop Rhizosphere Increase Phosphate Assimilation by the Plant

Author:

Ghoreshizadeh Seyedehtannaz1ORCID,Calvo-Peña Carla1ORCID,Ruiz-Muñoz Marina1,Otero-Suárez Rebeca1,Coque Juan José R.1ORCID,Cobos Rebeca1ORCID

Affiliation:

1. Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain

Abstract

Most of the phosphorus incorporated into agricultural soils through the use of fertilizers precipitates in the form of insoluble salts that are incapable of being used by plants. This insoluble phosphorus present in large quantities in soil forms the well-known “phosphorus legacy”. The solubilization of this “phosphorus legacy” has become a goal of great agronomic importance, and the use of phosphate-solubilizing bacteria would be a useful tool for this purpose. In this work, we have isolated and characterized phosphate-solubilizing bacteria from the rhizosphere of hop plants. Two particular strains, Pseudomonas taetrolens ULE-PH5 and Pseudomonas sp. ULE-PH6, were selected as plant growth-promoting rhizobacteria due to their high phosphate solubilization capability in both plate and liquid culture assays and other interesting traits, including auxin and siderophore production, phytate degradation, and acidic and alkaline phosphatase production. These strains were able to significantly increase phosphate uptake and accumulation of phosphorus in the aerial part (stems, petioles, and leaves) of hop plants, as determined by greenhouse trials. These strains are promising candidates to produce biofertilizers specifically to increase phosphate adsorption by hop plants.

Funder

PRIMA

Ministry of Science and Innovation

Junta de Castilla y León

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3