Calmodulin-Domain Protein Kinase PiCDPK1 Interacts with the 14-3-3-like Protein NtGF14 to Modulate Pollen Tube Growth

Author:

Scheible Nolan1,Henning Paige M.1ORCID,McCubbin Andrew G.1ORCID

Affiliation:

1. School of Biological Sciences, Washington State University, Pullman, WA 99164, USA

Abstract

Calcium-mediated signaling pathways are known to play important roles in the polar growth of pollen tubes. The calcium-dependent protein kinase, PiCDPK1, has been shown to be involved in regulating this process through interaction with a guanine dissociation inhibitor, PiRhoGDI1. To more fully understand the role of PiCDPK1 in pollen tube extension, we designed a pull-down study to identify additional substrates of this kinase. These experiments identified 123 putative interactors. Two of the identified proteins were predicted to directly interact with PiCDPK1, and this possibility was investigated in planta. The first, NtGF14, a 14-3-3-like protein, did not produce a noticeable phenotype when overexpressed in pollen alone but partially rescued the spherical tube phenotype caused by PiCDPK1 over-expression when co-over-expressed with the kinase. The second, NtREN1, a GTPase activating protein (GAP), severely inhibited pollen tube germination when over-expressed, and its co-over-expression with PiCDPK1 did not substantially affect this phenotype. These results suggest a novel in vivo interaction between NtGF14 and PiCDPK1 but do not support the direct interaction between PiCDPK1 and NtREN1. We demonstrate the utility of the methodology used to identify potential protein interactions while confirming the necessity of additional studies to confirm their validity. Finally, additional support was found for intersection between PiCDPK1 and RopGTPase pathways to control polar growth at the pollen tube tip.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3