Effects of Salt Stress on Physiological and Agronomic Traits of Rice Genotypes with Contrasting Salt Tolerance

Author:

Xu Yunming12,Bu Weicheng3,Xu Yuchao4,Fei Han1,Zhu Yiming2,Ahmad Irshad3ORCID,Nimir Nimir Eltyb Ahmed5,Zhou Guisheng23,Zhu Guanglong123ORCID

Affiliation:

1. Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China

2. Jiangsu Provincial Key Lab of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China

3. Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

4. Jiangsu Yancheng Port Salty-Soil Agriculture Circular Agricultural Co., Ltd., Yancheng 224000, China

5. Faculty of Agriculture, University of Khartoum, Khartoum 11115, Sudan

Abstract

Salinity is one of the major constraints to crop production. Rice is a main staple food and is highly sensitive to salinity. This study aimed to elucidate the effects of salt stress on physiological and agronomic traits of rice genotypes with contrasting salt tolerance. Six contrasting rice genotypes (DJWJ, JFX, NSIC, HKN, XD2H and HHZ), including three salt-tolerant and three salt-sensitive rice genotypes, were grown under two different salt concentrations (0 and 100 mmol L−1 NaCl solution). The results showed that growth, physiological and yield-related traits of both salt-sensitive and salt-tolerant rice were significantly affected by salt stress. In general, plant height, tiller number, dry weight and relative growth rate showed 15.7%, 11.2%, 25.2% and 24.6% more reduction in salt-sensitive rice than in salt-tolerant rice, respectively. On the contrary, antioxidant enzyme activity (superoxide dismutase, peroxidase, catalase), osmotic adjustment substances (proline, soluble protein, malondialdehyde (MDA)) and Na+ content were significantly increased under salt stress, and the increase was far higher in salt-tolerant rice except for MDA. Furthermore, grain yield and yield components significantly decreased under salt stress. Overall, the salt-sensitive rice genotypes showed a 15.3% greater reduction in grain yield, 5.1% reduction in spikelets per panicle, 7.4% reduction in grain-filling percentage and 6.1% reduction in grain weight compared to salt-tolerant genotypes under salt stress. However, a modest gap showed a decline in panicles (22.2% vs. 22.8%) and total spikelets (45.4% vs. 42.1%) between salt-sensitive and salt-tolerant rice under salinity conditions. This study revealed that the yield advantage of salt-tolerant rice was partially caused by more biomass accumulation, growth rate, strong antioxidant capacity and osmotic adjustment ability under salt stress, which contributed to more spikelets per panicle, high grain-filling percentage and grain weight. The results of this study could be helpful in understanding the physiological mechanism of contrasting rice genotypes’ responses to salt stress and to the breeding of salt-tolerant rice.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Jiangsu Province of China

“Belt and Road” innovation talent exchange for foreign experts program of the Ministry of Science and Technology

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3