Diverging Elevational Patterns of Tree vs. Epiphyte Species Density, Beta Diversity, and Biomass in a Tropical Dry Forest

Author:

Werner Florian A.1ORCID,Homeier Jürgen23ORCID

Affiliation:

1. Functional Ecology, Institute of Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzkystraße 9-11, 26111 Oldenburg, Germany

2. Faculty of Resource Management, HAWK University of Applied Sciences and Arts, Daimlerstraße 2, 37075 Göttingen, Germany

3. Plant Ecology, Georg-August University of Göttingen, 37073 Göttingen, Germany

Abstract

There is evidence to suggest that vascular epiphytes experience low competition for resources (light, water, and nutrients) compared to terrestrial plants. We tested the hypothesis that low resource competition may lead to higher nestedness among vascular epiphyte assemblages compared to trees. We studied the species composition and biomass of epiphytes and trees along an elevation gradient in a tropical dry forest in SW Ecuador. Both life-forms were inventoried on 25 plots of 400 m2 across five elevation levels (550–1250 m). Tree species density and total species richness increased with elevation, whereas basal area and biomass did not show significant trends. Epiphyte species density and richness both increased strongly with elevation, in parallel to biomass. Plot-level compositional changes were similarly strong for both life-forms. We attribute elevational increases in the species richness of trees and epiphytes to increasing humidity, i.e., more mesic growth conditions. We attribute the more pronounced elevational increase in epiphyte biomass, species density, and richness—the latter coupled with a higher degree of nestedness—to the greater moisture dependency of epiphytes and relatively low direct competition for resources. Our study provides a first comparison of elevational trends in epiphyte and tree diversity and biomass for a tropical dry forest.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3